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In the problem of the motion of a rigid body with one fixed point in a central 
Newtonian force field (in particular, in the de Brun field [I 1). The existence of 

a family of periodic solutions is proved by the Poincare’ method of small para- 
meters, It is assumed that the body differs negligibly from a dynamically sym- 
metric one and that its center of gravity is sufficiently close to the fixed point. 
The proof is carried out by using the techniques of Hamiltonian systems, 

We investigate the motion of a rigid body around a fixed point in a Newtonian gravity 
field, making use for this purpose ofthe canonical Deprit variables [2] which we introduce 
as follows. Let OxT’Z be a fixed coordinate system with origin at a fixed point 0,. 
whose Z-coordinate axis is directed vertically upward, and let Oxyz be a system of 
axes directed along the principal axes of inertia for point 0, Further, let ‘p, ‘1, 0 be 
the Euler angles defining the position of the moving system O.cyz relative to the fixed 
one. We introduce a plane containing point 0 and perpendicular to kinetic moment 
G. The position of this plane is given by the longitude h of its nodal line on the OXY 
plane and its inclination f to this same plane. Finally, we introduce two more Euler 
angles defining the position of the moving system of axes relative to the plane perpen- 
dicular to the kinetic moment : the angle of self-rotation I and the nutation angle b. 

As coordinates we now take the angles I, 6, ZL introduced, The canonical momenta 
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associated with them are, respectively, A. G, 11, where 

11 := G cos I, L = G cos 13 

The motion of a rigid body with one fixed point in a central Newtonian force field is 
determined by the Hamiltonian 

I< CT T -- u 

Here 1’ is the body’s weight, nz is its mass, xc, yC, zC are the coordinates of the 
body’s center of inertia in the moving coordinate system, A, 0. C are the principal 
moments of inertia, p, y‘, yv are the direction cosines of the fixed point’s radius- 
vector fj issuing from the attracting center in the moving system. The direction cosines 

are expressed in terms of the canonical variables in the following way : 

’ [H~/GZ - Pain1 + LJfG” -,H2cosgsinl + T=s 

G I/C;“- - .HJ sin g cos I] 

r’ = _.$wl/‘G’- L"cOsZ+L1/G'-_HZcOsgcOsI- 

GJfG”- Ii” sing sin I] 

r* = -& [HL - J”-(62 - L*) (G” - H”) cos g] 

The subsequent discussions are valid in equal measure for the following two cases. 

In the first case the center of inertia is sufficiently close to the body’s fixed point, while 
the body itself differs negligibly from a dynamically symmetric one. The other case is 
characterized by an angular velocity sufficiently large in modulus. In both cases, by a 

suitable choice of a small parameter we can achieve a partitioning of the Hamiltonian 

into the two parts needed for the app~~ation of Poincare’ method of small parameters. 
In the first case, as the small parameter we can take the quantity 

We represent the Hamiltonian function in the form 

K = K, + Ii’, (1) 

K,, = F+& h’,+$((GLLs)cos~~-~ 

Here KO is the Hamiltonian of the simplified system of canonical equations of motion 
defining the generating solution, while K, is the perturbing l-lamiltonian. We now write 
out the simplified system of equations of motion 

rl L 
dt== 

I), $4, +o 
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Its general solution is given by the formulas 

L = L, = con&, G = 6s = const, H = Ha = const 

1 = w,t + Pr, g = 02t f f32, h = p3 

‘J-C 
(01 = - LO, .+ic 

a3 LzL Go 
.*1 

(2) 

Solution (2) is periodic if for any integers k, and &we have krC$ = &&,. Here the 
period of the generating solution 

z = Z&lot = 2nk,lo, 
(3) 

We now prove the existence of periodic solutions with period (3) of the system of equa- 
tions with Hamiltonian (1) which coincide with the generating solution when fi = 0. 

The well-known Poincard conditions for the existence of periodic solutions for Hamil- 
tonian systems [3] can be simplified if we keep in mind that the equations of motion 

admit two integrals: the kinetic energy integral and the moment of momentum integral. 

By virtue of what has been said it is the following small Hessian 

which should be nonzero instead of the Hessian of function K, . 
The second group of periodicity conditions has the form (for simplicity of writing we 

do not formally delineate the small parameter in K,) 
5 

Condition (4) is always satisfied when A # c since 

Regarding the second group of conditions (5). the following cases can occur : 

In the first case the mean value of the Hamiltonian over a period, as shown by 
tations, does not depend on the constants pi and, therefore, conditions (5) are fulfilled 
identically. The last three cases are considered analogously. As an example let us ex- 

amine the case h_, = I$, = 1 for which 1 - g = Pr - Ps in the generating solu- 
tion; this leads to the necessity of additional analysis. Here 

‘I, cos (PI - f&)1 - “;6(‘$f’ (G,’ - Lo2) (G, - L,)“cos 2(& - /3cJ 

We see from (6) that the third one of the conditions (5) ( t = 3) is fulfilled identically, 
while the first two reduce to the one equation 
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It is obvious that condition (7) is fulfilled for a suitable choice of arbitrary constants and, 
consequently, in the case being considered there also exists a family of periodic solutions 
(but with a lesser number of arbitrary constants). 

We note that in the limit as R -+ ~10 we arrive at the classical problem of the mo- 
tion of a rigid body in a homogeneous gravity field, for which periodic solutions are ob- 
tained in the first two cases for sufficiently small A - B, xc, y,, z, As a more detailed 

investigation shows, the last two cases lead to periodic solutions inherent only for the 

de Brun field and the central Newtonian field. 
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Precession equations are widely applied in gyroscopic systems. The conditions, 
under whose fulfillment the application of these equations is in a certain sense 
legitimate, have been established for linear autonomous systems and for certain 

special cases of nonlinear systems [l - 31. We give below the proof of precession 
theory for a wide class of nonlinear and nonautonomous systems. 

We consider a system under the action of gyroscopic forces depending on a large posi- 
tive parameter H, resistance forces with total dissipation, and other generalized forces 
& (q, t) depending on the coordinates 9 and on time f. Among the generalized for- 
ces Qk (q, t) there can occur potential, position-nonconservative (radial-correction), 
and other forces depending on the coordinates, perturbing forces depending explicitly on 
time, inertia forces, etc. 

We shall write the equations of motion in the following form [ 1, 21: 


